Algorithm Design,1th edition

Algorithm Design 1th edition | TEST BANK

By: Jon Kleinberg
About this Textbook
ISBN-10: 0321295358
/ ISBN-13: 9780321295354
Edition: 1th edition
Format: MS Word /or PDF
Published By: Pearson

TEST BANK

$25

22%
OFF
or

Get more savings using the coupon code "Testbankszip" on the check out page.


Resource Type:

Ebook Title:

Authors:

Publisher:

Yes , you are going to get a digital file with exam Questions and Answers for the Textbook “Algorithm Design by 1th edition, 

After successfully completed your order, you get an automated email with payment id and a downloadable link for the Algorithm Design TEST BANK 

ZIP is a standard file format that’s used to compress one or more chapters or files into a single location, to open a zip file you need to install Winzip free from their official website at link

The majority of the exam chapters are either in Word or PDF format, it depends on how it was released by the publisher.

 

Absolutely! TestBanksZip gives you the option to get a free chapter before investing in the entire product.

If you don’t get your download within 2 hours, please contact us. In the rare event that your product cannot be delivered, a refund will be issued promptly.

If for some reason your files are corrupted, please contact our team to resolve the issues or to obtain a refund.

Other than the reasons listed, all sales are considered final. Please make sure you are careful to purchase the right item before completing your transaction.

You can view our complete refund policy here.

If you need assistance regarding purchaing any of our listed study guides, you can fill the contact us form page.Our support agent will get in touch with you.

Table of contents:

Algorithm Design
Jon Kleinberg and Eva Tardos

Table of Contents

1 Introduction: Some Representative Problems

1.1 A First Problem: Stable Matching

1.2 Five Representative Problems
Solved Exercises
Excercises
Notes and Further Reading

2 Basics of Algorithms Analysis

2.1 Computational Tractability

2.2 Asymptotic Order of Growth Notation

2.3 Implementing the Stable Matching Algorithm using Lists and Arrays

2.4 A Survey of Common Running Times

2.5 A More Complex Data Structure: Priority Queues

Solved Exercises
Exercises
Notes and Further Reading

3 Graphs

3.1 Basic Definitions and Applications

3.2 Graph Connectivity and Graph Traversal
3.3 Implementing Graph Traversal using Queues and Stacks
3.4 Testing Bipartiteness: An Application of Breadth-First Search
3.5 Connectivity in Directed Graphs
3.6 Directed Acyclic Graphs and Topological Ordering
Solved Exercises
Exercises
Notes and Further Reading

4 Greedy Algorithms
4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead
4.2 Scheduling to Minimize Lateness: An Exchange Argument
4.3 Optimal Caching: A More Complex Exchange Argument
4.4 Shortest Paths in a Graph
4.5 The Minimum Spanning Tree Problem
4.6 Implementing Kruskal’s Algorithm: The Union-Find Data Structure
4.7 Clustering
4.8 Huffman Codes and the Problem of Data Compression
*4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm
Solved Exercises
Excercises
Notes and Further Reading

5 Divide and Conquer
5.1 A First Recurrence: The Mergesort Algorithm
5.2 Further Recurrence Relations
5.3 Counting Inversions
5.4 Finding the Closest Pair of Points
5.5 Integer Multiplication
5.6 Convolutions and The Fast Fourier Transform
Solved Exercises
Exercises
Notes and Further Reading

6 Dynamic Programming
6.1 Weighted Interval Scheduling: A Recursive Procedure
6.2 Weighted Interval Scheduling: Iterating over Sub-Problems
6.3 Segmented Least Squares: Multi-way Choices
6.4 Subset Sums and Knapsacks: Adding a Variable
6.5 RNA Secondary Structure: Dynamic Programming Over Intervals
6.6 Sequence Alignment
6.7 Sequence Alignment in Linear Space
6.8 Shortest Paths in a Graph
6.9 Shortest Paths and Distance Vector Protocols
*6.10 Negative Cycles in a Graph

Solved Exercises
Exercises
Notes and Further Reading

7 Network Flow
7.1 The Maximum Flow Problem and the Ford-Fulkerson Algorithm
7.2 Maximum Flows and Minimum Cuts in a Network
7.3 Choosing Good Augmenting Paths
*7.4 The Preflow-Push Maximum Flow Algorithm
7.5 A First Application: The Bipartite Matching Problem
7.6 Disjoint Paths in Directed and Undirected Graphs
7.7 Extensions to the Maximum Flow Problem
7.8 Survey Design
7.9 Airline Scheduling
7.10 Image Segmentation
7.11 Project Selection
7.12 Baseball Elimination
*7.13 A Further Direction: Adding Costs to the Matching Problem
Solved Exercises
Exercises
Notes and Further Reading

8 NP and Computational Intractability
8.1 Polynomial-Time Reductions

8.2 Reductions via ‘Gadgets’: The Satisfiability Problem
8.3 Efficient Certification and the Definition of NP
8.4 NP-Complete Problems
8.5 Sequencing Problems
8.6 Partitioning Problems
8.7 Graph Coloring
8.8 Numerical Problems
8.9 Co-NP and the Asymmetry of NP
8.10 A Partial Taxonomy of Hard Problems
Solved Exercises
Exercises
Notes and Further Reading

9 PSPACE: A Class of Problems Beyond NP
9.1 PSPACE
9.2 Some Hard Problems in PSPACE
9.3 Solving Quantified Problems and Games in Polynomial Space
9.4 Solving the Planning Problem in Polynomial Space
9.5 Proving Problems PSPACE-Complete
Solved Exercises
Exercises
Notes and Further Reading

10 Extending the Limits of Tractability
10.1 Finding Small Vertex Covers
10.2 Solving NP-Hard Problem on Trees
10.3 Coloring a Set of Circular Arcs
*10.4 Tree Decompositions of Graphs
*10.5 Constructing a Tree Decomposition
Solved Exercises
Exercises
Notes and Further Reading

11 Approximation Algorithms
11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem
11.2 The Center Selection Problem
11.3 Set Cover: A General Greedy Heuristic
11.4 The Pricing Method: Vertex Cover
11.5 Maximization via the Pricing method: The Disjoint Paths Problem
11.6 Linear Programming and Rounding: An Application to Vertex Cover
*11.7 Load Balancing Revisited: A More Advanced LP Application
11.8 Arbitrarily Good Approximations: the Knapsack Problem
Solved Exercises
Exercises
Notes and Further Reading

12 Local Search
12.1 The Landscape of an Optimization Problem
12.2 The Metropolis Algorithm and Simulated Annealing
12.3 An Application of Local Search to Hopfield Neural Networks
12.4 Maximum Cut Approximation via Local Search
12.5 Choosing a Neighbor Relation
*12.6 Classification via Local Search
12.7 Best-Response Dynamics and Nash Equilibria
Solved Exercises
Exercises
Notes and Further Reading

13 Randomized Algorithms
13.1 A First Application: Contention Resolution
13.2 Finding the Global Minimum Cut
13.3 Random Variables and their Expectations
13.4 A Randomized Approximation Algorithm for MAX 3-SAT
13.5 Randomized Divide-and-Conquer: Median-Finding and Quicksort
13.6 Hashing: A Randomized Implementation of Dictionaries
13.7 Finding the Closest Pair of Points: A Randomized Approach
13.8 Randomized Caching
13.9 Chernoff Bounds
13.10 Load Balancing
*13.11 Packet Routing
13.12 Background: Some Basic Probability Definitions
Solved Exercises
Exercises
Notes and Further Reading

Epilogue: Algorithms that Run Forever

References

Index

Reviews

Create a Free Account

* We don’t share your personal info with anyone. Check out our Privacy Policy for more information